Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromolecular Med ; 26(1): 3, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407687

RESUMO

Cerebral ischemic stroke is one of the foremost global causes of death and disability. Due to inadequate knowledge in its sequential disease mechanisms, therapeutic efforts to mitigate acute ischemia-induced brain injury are limited. Recent studies have implicated epigenetic mechanisms, mostly histone lysine acetylation/deacetylation, in ischemia-induced neural damage and death. However, the role of lysine methylation/demethylation, another prevalent epigenetic mechanism in cerebral ischemia has not undergone comprehensive investigation, except a few recent reports, including those from our research cohort. Considering the impact of sex on post-stroke outcomes, we studied both male and female mice to elucidate molecular details using our recently developed Internal Carotid Artery Occlusion (ICAO) model, which induces mild to moderate cerebral ischemia, primarily affecting the striatum and ventral hippocampus. Here, we demonstrate for the first time that female mice exhibit faster recovery than male mice following ICAO, evaluated through neurological deficit score and motor coordination assessment. Furthermore, our investigation unveiled that dysregulated histone lysine demethylases (KDMs), particularly kdm4b/jmjd2b are responsible for the sex-specific variance in the modulation of inflammatory genes. Building upon our prior reportage blocking KDMs by DMOG (Dimethyloxalylglycine) and thus preventing the attenuation in H3k9me2 reduced the post-ICAO transcript levels of the inflammatory molecules and neural damage, our present study delved into investigating the differential role of H3k9me2 in the regulation of pro-inflammatory genes in female vis-à-vis male mice underlying ICAO-induced neural damage and recovery. Overall, our results reveal the important role of epigenetic mark H3k9me2 in mediating sex-specific sequential events in inflammatory response, elicited post-ICAO.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Animais , Camundongos , Artéria Carótida Interna , Lisina , Infarto Cerebral , Modelos Animais de Doenças , Epigênese Genética
2.
Org Biomol Chem ; 22(4): 714-719, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38165701

RESUMO

Geminal C-4 diarylation of substituted pyrazol-5(4H)-ones with in situ generated arynes as the aryl source has been achieved in a one-flask operation. All the newly accessed C4-gem-diarylated pyrazolone entities were found to be non-cytotoxic with varying AChE enzyme inhibitory activities and BBB permeability attributes that augur well for further advancement towards CNS therapeutics for untreatable disorders.

3.
ACS Appl Bio Mater ; 6(10): 4208-4216, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37728547

RESUMO

Over the past few decades, zinc oxide nanoparticles have also proven to be essential to a variety of scientific research sectors, including antimicrobial therapy, tissue engineering, bioimaging, biosensors, drug delivery, gene delivery, and bioimaging. There is an urgent need to establish and develop unique alternative treatment modalities to treat neurodegenerative disorders due to the shortcomings of the existing drugs. As a possible therapy for brain diseases and disorders, the ability of the nanoparticles to cross the blood-brain barrier (BBB) as well as their reduced toxicity, solubility, and biodegradability has lately attracted attention. Scientists are quietly turning their attention to develop green synthesis of nanoparticles as an alternative to the physical and chemical techniques of producing the same. Existing literature has emphasized the use of ZnO for the potential treatment of cerebral ischemia and its neuroprotective properties. This work discusses the potential of ZnO prepared using Gynura cusimba extract and its nanocomposites with graphene quantum dots (GQDs) and its nitrogen doped variant, N-GQDs as neurotrophic agents, in accordance with our previous report on the use of GQDs and N-GQDs as neurotrophic agents. Pristine ZnO nanoparticles as well as composites were duly characterized by using several techniques to confirm the formation of the nanocomposites. Biological evaluation using the neurite outgrowth assay following the cell viability assay revealed that incorporation of GQDs and N-GQDs enhanced the neurite length in comparison to that of pristine ZnO with the nanocomposites of N-GQDs showing comparatively better results, corroborated by the real-time PCR studies as well.

4.
Bioorg Chem ; 139: 106698, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418784

RESUMO

Chemically diverse scaffolds represent a main source of biologically important starting points in drug discovery. Herein, we report the development of such diverse scaffolds from nitroarene/ nitro(hetero)arenes using a key synthetic strategy. In a pilot-scale study, the synthesis of 10 diverse scaffolds was achieved. The 1,7-phenanthroline, thiazolo[5,4-f]quinoline, 2,3-dihydro-1H-pyrrolo[2,3-g]quinoline, pyrrolo[3,2-f]quinoline, 1H-[1,4]oxazino[3,2-g]quinolin-2(3H)-one, [1,2,5]oxadiazolo[3,4-h]quinoline, 7H-pyrido[2,3-c]carbazole, 3H-pyrazolo[4,3-f]quinoline, pyrido[3,2-f]quinoxaline were obtained from nitro hetero arenes in ethanol using iron-acetic acid treatment followed by reaction under oxygen atmosphere. This diverse library is compliant with the rule of five for drug-likeness. The mapping of chemical space represented by these scaffolds revealed a significant contribution to the underrepresented chemical diversity. Crucial to the development of this approach was the mapping of biological space covered by these scaffolds which revealed neurotropic and prophylactic anti-inflammatory activities. In vitro, neuro-biological assays revealed that compounds 14a and 15a showed excellent neurotropic potential and neurite growth compared to controls. Further, anti-inflammatory assays (in vitro and in vivo models) exhibited that Compound 16 showed significant anti-inflammatory activity by attenuating the LPS-induced TNF-α and CD68 levels by modulating the NFkB pathway. In addition, treatment with compound 16 significantly ameliorated the LPS-induced sepsis conditions, and pathological abnormalities (in lung and liver tissues) and improved the survival of the rats compared to LPS control. Owing to their chemical diversity along with bioactivities, it is envisaged that new quality pre-clinical candidates will be generated in the above therapeutic areas using identified leads.

5.
ACS Appl Bio Mater ; 6(6): 2237-2247, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37167607

RESUMO

Over time, developments in nano-biomedical research have led to the creation of a number of systems to cure serious illnesses. Tandem use of nano-theragnostics such as diagnostic and therapeutic approaches tailored to the individual disease treatment is crucial for further development in the field of biomedical advancements. Graphene has garnered attention in the recent times as a potential nanomaterial for tissue engineering and regenerative medicines owing to its biocompatibility among the several other unique properties it possesses. The zero-dimensional graphene quantum dots (GQDs) and their nitrogen-doped variant, nitrogen-doped GQDs (N-GQDs), have good biocompatibility, and optical and physicochemical properties. GQDs have been extensively researched owing to several factors such as their size, surface charge, and interactions with other molecules found in biological media. This work briefly elucidates the potential of electroactive GQDs as well as N-GQDs as neurotrophic agents. In vitro investigations employing the N2A cell line were used to evaluate the effectiveness of GQDs and N-GQDs as neurotrophic agents, wherein basic investigations such as SRB assay and neurite outgrowth assay were performed. The results inferred from immunohistochemistry followed by confocal imaging studies as well as quantitative real-time PCR (qPCR) studies corroborated those obtained from neurite outgrowth assay. We have also conducted a preliminary investigation of the pattern of gene expression for neurotrophic and gliotrophic growth factors using ex vivo neuronal and mixed glial cultures taken from the brains of postnatal day 2 mice pups. Overall, the studies indicated that GQDs and N-GQDs hold prospect as a framework for further development of neuroactive compounds for relevant central nervous system (CNS) purposes.


Assuntos
Grafite , Nanoestruturas , Pontos Quânticos , Camundongos , Animais , Grafite/farmacologia , Grafite/química , Pontos Quânticos/química , Nitrogênio/química
6.
Neuromolecular Med ; 24(3): 268-273, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34837638

RESUMO

Neuroprotective, antineuroinflammatory, and proneurogenic effects of glucosamine, a naturally occurring amino sugar, have been reported in various animal models of brain injury including cerebral ischemia and hypoxic brain damage. Given that clinical translation of therapeutic candidates identified in animal models of ischemic stroke has remained unsatisfactory in general, possibly due to inadequacy of existing models, we sought to study the effects of glucosamine in a recently developed, clinical condition mimicking mouse model of internal cerebral artery occlusion. In this model of mild to moderate striatal damage, glucosamine ameliorated behavioral dysfunction, rescued ischemia-induced striatal damage, and suppressed ischemia-induced upregulation of proinflammatory genes in striatal tissue. Further, in ex vivo neurosphere assay involving neural stem cells/neural progenitor cells from subventricular zone, glucosamine increased the number of large neurospheres, along with enhancing mRNA levels of the proliferation markers Nestin, NeuroD1, and Sox2. Lastly, coronal brain sections containing the striatal region with subventricular zone showed increased number of BrdU positive cells and DCX positive cells, a marker for newly differentiating and immature neurons, in glucosamine-treated ischemic mice. Cumulatively, the results confirming neuroprotective, antineuroinflammatory, and proneurogenic effects of glucosamine enhance drug repurposing potential of glucosamine in cerebral ischemia.


Assuntos
Isquemia Encefálica , Células-Tronco Neurais , Animais , Isquemia Encefálica/tratamento farmacológico , Artéria Carótida Interna , Infarto Cerebral , Modelos Animais de Doenças , Glucosamina/farmacologia , Glucosamina/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia , Camundongos , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...